Change in ...osmo-ttcn3-hacks[master]: Import snow-3g.[ch] from nextepc source code

This is merely a historical archive of years 2008-2021, before the migration to mailman3.

A maintained and still updated list archive can be found at https://lists.osmocom.org/hyperkitty/list/gerrit-log@lists.osmocom.org/.

laforge gerrit-no-reply at lists.osmocom.org
Wed Aug 14 11:07:32 UTC 2019


laforge has uploaded this change for review. ( https://gerrit.osmocom.org/c/osmo-ttcn3-hacks/+/15198


Change subject: Import snow-3g.[ch] from nextepc source code
......................................................................

Import snow-3g.[ch] from nextepc source code

Change-Id: I938de2ad17210aa1561240c0a96d0df216243be1
---
A mme/snow-3g.c
A mme/snow-3g.h
2 files changed, 660 insertions(+), 0 deletions(-)



  git pull ssh://gerrit.osmocom.org:29418/osmo-ttcn3-hacks refs/changes/98/15198/1

diff --git a/mme/snow-3g.c b/mme/snow-3g.c
new file mode 100644
index 0000000..4c728fe
--- /dev/null
+++ b/mme/snow-3g.c
@@ -0,0 +1,592 @@
+/*------------------------------------------------------------------------
+* SNOW_3G.c
+*------------------------------------------------------------------------*/
+
+#include "snow-3g.h"
+
+/* LFSR */
+
+static u32 LFSR_S0 = 0x00;
+static u32 LFSR_S1 = 0x00;
+static u32 LFSR_S2 = 0x00;
+static u32 LFSR_S3 = 0x00;
+static u32 LFSR_S4 = 0x00;
+static u32 LFSR_S5 = 0x00;
+static u32 LFSR_S6 = 0x00;
+static u32 LFSR_S7 = 0x00;
+static u32 LFSR_S8 = 0x00;
+static u32 LFSR_S9 = 0x00;
+static u32 LFSR_S10 = 0x00;
+static u32 LFSR_S11 = 0x00;
+static u32 LFSR_S12 = 0x00;
+static u32 LFSR_S13 = 0x00;
+static u32 LFSR_S14 = 0x00;
+static u32 LFSR_S15 = 0x00;
+
+/* FSM */
+
+static u32 FSM_R1 = 0x00;
+static u32 FSM_R2 = 0x00;
+static u32 FSM_R3 = 0x00;
+
+/* Rijndael S-box SR */
+
+static u8 SR[256] = {
+0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
+0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
+0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
+0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
+0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
+0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
+0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
+0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
+0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
+0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
+0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
+0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
+0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
+0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
+0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
+0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16
+};
+
+/* S-box SQ */
+
+static u8 SQ[256] = {
+0x25,0x24,0x73,0x67,0xD7,0xAE,0x5C,0x30,0xA4,0xEE,0x6E,0xCB,0x7D,0xB5,0x82,0xDB,
+0xE4,0x8E,0x48,0x49,0x4F,0x5D,0x6A,0x78,0x70,0x88,0xE8,0x5F,0x5E,0x84,0x65,0xE2,
+0xD8,0xE9,0xCC,0xED,0x40,0x2F,0x11,0x28,0x57,0xD2,0xAC,0xE3,0x4A,0x15,0x1B,0xB9,
+0xB2,0x80,0x85,0xA6,0x2E,0x02,0x47,0x29,0x07,0x4B,0x0E,0xC1,0x51,0xAA,0x89,0xD4,
+0xCA,0x01,0x46,0xB3,0xEF,0xDD,0x44,0x7B,0xC2,0x7F,0xBE,0xC3,0x9F,0x20,0x4C,0x64,
+0x83,0xA2,0x68,0x42,0x13,0xB4,0x41,0xCD,0xBA,0xC6,0xBB,0x6D,0x4D,0x71,0x21,0xF4,
+0x8D,0xB0,0xE5,0x93,0xFE,0x8F,0xE6,0xCF,0x43,0x45,0x31,0x22,0x37,0x36,0x96,0xFA,
+0xBC,0x0F,0x08,0x52,0x1D,0x55,0x1A,0xC5,0x4E,0x23,0x69,0x7A,0x92,0xFF,0x5B,0x5A,
+0xEB,0x9A,0x1C,0xA9,0xD1,0x7E,0x0D,0xFC,0x50,0x8A,0xB6,0x62,0xF5,0x0A,0xF8,0xDC,
+0x03,0x3C,0x0C,0x39,0xF1,0xB8,0xF3,0x3D,0xF2,0xD5,0x97,0x66,0x81,0x32,0xA0,0x00,
+0x06,0xCE,0xF6,0xEA,0xB7,0x17,0xF7,0x8C,0x79,0xD6,0xA7,0xBF,0x8B,0x3F,0x1F,0x53,
+0x63,0x75,0x35,0x2C,0x60,0xFD,0x27,0xD3,0x94,0xA5,0x7C,0xA1,0x05,0x58,0x2D,0xBD,
+0xD9,0xC7,0xAF,0x6B,0x54,0x0B,0xE0,0x38,0x04,0xC8,0x9D,0xE7,0x14,0xB1,0x87,0x9C,
+0xDF,0x6F,0xF9,0xDA,0x2A,0xC4,0x59,0x16,0x74,0x91,0xAB,0x26,0x61,0x76,0x34,0x2B,
+0xAD,0x99,0xFB,0x72,0xEC,0x33,0x12,0xDE,0x98,0x3B,0xC0,0x9B,0x3E,0x18,0x10,0x3A,
+0x56,0xE1,0x77,0xC9,0x1E,0x9E,0x95,0xA3,0x90,0x19,0xA8,0x6C,0x09,0xD0,0xF0,0x86
+};
+
+/* MULx.
+* Input V: an 8-bit input.
+* Input c: an 8-bit input.
+* Output : an 8-bit output.
+* See section 3.1.1 for details.
+*/
+
+u8 MULx(u8 V, u8 c)
+{
+	if ( V & 0x80 )
+		return ( (V << 1) ^ c);
+	else
+		return ( V << 1);
+}
+
+/* MULxPOW.
+* Input V: an 8-bit input.
+* Input i: a positive integer.
+* Input c: an 8-bit input.
+* Output : an 8-bit output.
+* See section 3.1.2 for details.
+*/
+
+u8 MULxPOW(u8 V, u8 i, u8 c)
+{
+	if ( i == 0)
+		return V;
+	else
+		return MULx( MULxPOW( V, i-1, c ), c);
+}
+
+/* The function MUL alpha.
+* Input c: 8-bit input.
+* Output : 32-bit output.
+* See section 3.4.2 for details.
+*/
+
+u32 MULalpha(u8 c)
+{
+	return ( ( ((u32)MULxPOW(c, 23, 0xa9)) << 24 ) |
+		( ((u32)MULxPOW(c, 245, 0xa9)) << 16 ) |
+		( ((u32)MULxPOW(c, 48, 0xa9)) << 8 ) |
+		( ((u32)MULxPOW(c, 239, 0xa9)) ) ) ;
+}
+
+/* The function DIV alpha.
+* Input c: 8-bit input.
+* Output : 32-bit output.
+* See section 3.4.3 for details.
+*/
+
+u32 DIValpha(u8 c)
+{
+	return ( ( ((u32)MULxPOW(c, 16, 0xa9)) << 24 ) |
+		( ((u32)MULxPOW(c, 39, 0xa9)) << 16 ) |
+		( ((u32)MULxPOW(c, 6, 0xa9)) << 8 ) |
+		( ((u32)MULxPOW(c, 64, 0xa9)) ) ) ;
+}
+
+/* The 32x32-bit S-Box S1
+* Input: a 32-bit input.
+* Output: a 32-bit output of S1 box.
+* See section 3.3.1.
+*/
+
+u32 S1(u32 w)
+{
+	u8 r0=0, r1=0, r2=0, r3=0;
+	u8 srw0 = SR[ (u8)((w >> 24) & 0xff) ];
+	u8 srw1 = SR[ (u8)((w >> 16) & 0xff) ];
+	u8 srw2 = SR[ (u8)((w >> 8) & 0xff) ];
+	u8 srw3 = SR[ (u8)((w) & 0xff) ];
+	r0 = ( ( MULx( srw0 , 0x1b) ) ^
+		( srw1 ) ^
+		( srw2 ) ^
+		( (MULx( srw3, 0x1b)) ^ srw3 )
+	);
+	r1 = ( ( ( MULx( srw0 , 0x1b) ) ^ srw0 ) ^
+		( MULx(srw1, 0x1b) ) ^
+		( srw2 ) ^
+		( srw3 )
+	);
+	r2 = ( ( srw0 ) ^
+		( ( MULx( srw1 , 0x1b) ) ^ srw1 ) ^
+		( MULx(srw2, 0x1b) ) ^
+		( srw3 )
+	);
+	r3 = ( ( srw0 ) ^
+		( srw1 ) ^
+		( ( MULx( srw2 , 0x1b) ) ^ srw2 ) ^
+		( MULx( srw3, 0x1b) )
+	);
+
+	return ( ( ((u32)r0) << 24 ) | ( ((u32)r1) << 16 ) | ( ((u32)r2) << 8 ) |
+		( ((u32)r3) ) );
+}
+
+/* The 32x32-bit S-Box S2
+* Input: a 32-bit input.
+* Output: a 32-bit output of S2 box.
+* See section 3.3.2.
+*/
+
+u32 S2(u32 w)
+{
+	u8 r0=0, r1=0, r2=0, r3=0;
+	u8 sqw0 = SQ[ (u8)((w >> 24) & 0xff) ];
+	u8 sqw1 = SQ[ (u8)((w >> 16) & 0xff) ];
+	u8 sqw2 = SQ[ (u8)((w >> 8) & 0xff) ];
+	u8 sqw3 = SQ[ (u8)((w) & 0xff) ];
+	r0 = ( ( MULx( sqw0 , 0x69) ) ^
+		( sqw1 ) ^
+		( sqw2 ) ^
+		( (MULx( sqw3, 0x69)) ^ sqw3 )
+	);
+	r1 = ( ( ( MULx( sqw0 , 0x69) ) ^ sqw0 ) ^
+		( MULx(sqw1, 0x69) ) ^
+		( sqw2 ) ^
+		( sqw3 )
+	);
+	r2 = ( ( sqw0 ) ^
+		( ( MULx( sqw1 , 0x69) ) ^ sqw1 ) ^
+		( MULx(sqw2, 0x69) ) ^
+		( sqw3 )
+	);
+	r3 = ( ( sqw0 ) ^
+		( sqw1 ) ^
+		( ( MULx( sqw2 , 0x69) ) ^ sqw2 ) ^
+		( MULx( sqw3, 0x69) )
+	);
+	return ( ( ((u32)r0) << 24 ) | ( ((u32)r1) << 16 ) | ( ((u32)r2) << 8 ) |
+		( ((u32)r3) ) );
+}
+
+/* Clocking LFSR in initialization mode.
+* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
+* Input F: a 32-bit word comes from output of FSM.
+* See section 3.4.4.
+*/
+
+void ClockLFSRInitializationMode(u32 F)
+{
+	u32 v = ( ( (LFSR_S0 << 8) & 0xffffff00 ) ^
+		( MULalpha( (u8)((LFSR_S0>>24) & 0xff) ) ) ^
+		( LFSR_S2 ) ^
+		( (LFSR_S11 >> 8) & 0x00ffffff ) ^
+		( DIValpha( (u8)( ( LFSR_S11) & 0xff ) ) ) ^
+		( F )
+	);
+	LFSR_S0 = LFSR_S1;
+	LFSR_S1 = LFSR_S2;
+	LFSR_S2 = LFSR_S3;
+	LFSR_S3 = LFSR_S4;
+	LFSR_S4 = LFSR_S5;
+	LFSR_S5 = LFSR_S6;
+	LFSR_S6 = LFSR_S7;
+	LFSR_S7 = LFSR_S8;
+	LFSR_S8 = LFSR_S9;
+	LFSR_S9 = LFSR_S10;
+	LFSR_S10 = LFSR_S11;
+	LFSR_S11 = LFSR_S12;
+	LFSR_S12 = LFSR_S13;
+	LFSR_S13 = LFSR_S14;
+	LFSR_S14 = LFSR_S15;
+	LFSR_S15 = v;
+}
+
+/* Clocking LFSR in keystream mode.
+* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
+* See section 3.4.5.
+*/
+
+void ClockLFSRKeyStreamMode()
+{
+	u32 v = ( ( (LFSR_S0 << 8) & 0xffffff00 ) ^
+		( MULalpha( (u8)((LFSR_S0>>24) & 0xff) ) ) ^
+		( LFSR_S2 ) ^
+		( (LFSR_S11 >> 8) & 0x00ffffff ) ^
+		( DIValpha( (u8)( ( LFSR_S11) & 0xff ) ) )
+	);
+	LFSR_S0 = LFSR_S1;
+	LFSR_S1 = LFSR_S2;
+	LFSR_S2 = LFSR_S3;
+	LFSR_S3 = LFSR_S4;
+	LFSR_S4 = LFSR_S5;
+	LFSR_S5 = LFSR_S6;
+	LFSR_S6 = LFSR_S7;
+	LFSR_S7 = LFSR_S8;
+	LFSR_S8 = LFSR_S9;
+	LFSR_S9 = LFSR_S10;
+	LFSR_S10 = LFSR_S11;
+	LFSR_S11 = LFSR_S12;
+	LFSR_S12 = LFSR_S13;
+	LFSR_S13 = LFSR_S14;
+	LFSR_S14 = LFSR_S15;
+	LFSR_S15 = v;
+}
+
+/* Clocking FSM.
+* Produces a 32-bit word F.
+* Updates FSM registers R1, R2, R3.
+* See Section 3.4.6.
+*/
+
+u32 ClockFSM()
+{
+	u32 F = ( ( LFSR_S15 + FSM_R1 ) & 0xffffffff ) ^ FSM_R2 ;
+	u32 r = ( FSM_R2 + ( FSM_R3 ^ LFSR_S5 ) ) & 0xffffffff ;
+	FSM_R3 = S2(FSM_R2);
+	FSM_R2 = S1(FSM_R1);
+	FSM_R1 = r;
+	return F;
+}
+
+/* Initialization.
+* Input k[4]: Four 32-bit words making up 128-bit key.
+* Input IV[4]: Four 32-bit words making 128-bit initialization variable.
+* Output: All the LFSRs and FSM are initialized for key generation.
+* See Section 4.1.
+*/
+
+void snow_3g_initialize(u32 k[4], u32 IV[4])
+{
+	u8 i=0;
+	u32 F = 0x0;
+	LFSR_S15 = k[3] ^ IV[0];
+	LFSR_S14 = k[2];
+	LFSR_S13 = k[1];
+	LFSR_S12 = k[0] ^ IV[1];
+	LFSR_S11 = k[3] ^ 0xffffffff;
+	LFSR_S10 = k[2] ^ 0xffffffff ^ IV[2];
+	LFSR_S9 = k[1] ^ 0xffffffff ^ IV[3];
+	LFSR_S8 = k[0] ^ 0xffffffff;
+	LFSR_S7 = k[3];
+	LFSR_S6 = k[2];
+	LFSR_S5 = k[1];
+	LFSR_S4 = k[0];
+	LFSR_S3 = k[3] ^ 0xffffffff;
+	LFSR_S2 = k[2] ^ 0xffffffff;
+	LFSR_S1 = k[1] ^ 0xffffffff;
+	LFSR_S0 = k[0] ^ 0xffffffff;
+	FSM_R1 = 0x0;
+	FSM_R2 = 0x0;
+	FSM_R3 = 0x0;
+	for(i=0;i<32;i++)
+	{
+		F = ClockFSM();
+		ClockLFSRInitializationMode(F);
+	}
+}
+
+/* Generation of Keystream.
+* input n: number of 32-bit words of keystream.
+* input z: space for the generated keystream, assumes
+* memory is allocated already.
+* output: generated keystream which is filled in z
+* See section 4.2.
+*/
+
+void snow_3g_generate_key_stream(u32 n, u32 *ks)
+{
+	u32 t = 0;
+	u32 F = 0x0;
+	ClockFSM(); /* Clock FSM once. Discard the output. */
+	ClockLFSRKeyStreamMode(); /* Clock LFSR in keystream mode once. */
+	for ( t=0; t<n; t++)
+	{
+		F = ClockFSM(); /* STEP 1 */
+		ks[t] = F ^ LFSR_S0; /* STEP 2 */
+		/* Note that ks[t] corresponds to z_{t+1} in section 4.2
+		*/
+		ClockLFSRKeyStreamMode(); /* STEP 3 */
+	}
+}
+
+/*-----------------------------------------------------------------------
+* end of SNOW_3G.c
+*-----------------------------------------------------------------------*/
+
+/*---------------------------------------------------------
+* f8.c
+*---------------------------------------------------------*/
+
+/*
+#include "f8.h"
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+*/
+
+/* f8.
+* Input key: 128 bit Confidentiality Key.
+* Input count:32-bit Count, Frame dependent input.
+* Input bearer: 5-bit Bearer identity (in the LSB side).
+* Input dir:1 bit, direction of transmission.
+* Input data: length number of bits, input bit stream.
+* Input length: 32 bit Length, i.e., the number of bits to be encrypted or
+* decrypted.
+* Output data: Output bit stream. Assumes data is suitably memory
+* allocated.
+* Encrypts/decrypts blocks of data between 1 and 2^32 bits in length as
+* defined in Section 3.
+*/
+
+void snow_3g_f8(u8 *key, u32 count, u32 bearer, u32 dir, u8 *data, u32 length)
+{
+	u32 K[4],IV[4];
+	int n = ( length + 31 ) / 32;
+	int i=0;
+	int lastbits = (8-(length%8)) % 8;
+	u32 *KS;
+	
+	/*Initialisation*/
+	/* Load the confidentiality key for SNOW 3G initialization as in section
+	3.4. */
+	for (i=0; i<4; i++)
+		K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16) 
+			   ^ (key[4*i+2] << 8) ^ (key[4*i+3]);
+	
+	/* Prepare the initialization vector (IV) for SNOW 3G initialization as in
+	section 3.4. */
+	IV[3] = count;
+	IV[2] = (bearer << 27) | ((dir & 0x1) << 26);
+	IV[1] = IV[3];
+	IV[0] = IV[2];
+	
+	/* Run SNOW 3G algorithm to generate sequence of key stream bits KS*/
+	snow_3g_initialize(K,IV);
+	KS = (u32 *)ogs_malloc(4*n);
+	snow_3g_generate_key_stream(n,(u32*)KS);
+	
+	/* Exclusive-OR the input data with keystream to generate the output bit
+	stream */
+	for (i=0; i<n; i++)
+	{
+		data[4*i+0] ^= (u8) (KS[i] >> 24) & 0xff;
+		data[4*i+1] ^= (u8) (KS[i] >> 16) & 0xff;
+		data[4*i+2] ^= (u8) (KS[i] >> 8) & 0xff;
+		data[4*i+3] ^= (u8) (KS[i] ) & 0xff;
+	}
+	
+	ogs_free(KS);
+	
+	/* zero last bits of data in case its length is not byte-aligned 
+	   this is an addition to the C reference code, which did not handle it */
+	if (lastbits)
+		data[length/8] &= 256 - (1<<lastbits);
+}
+/* End of f8.c */
+
+/*---------------------------------------------------------
+ *					f9.c
+ *---------------------------------------------------------*/
+
+/* MUL64x.
+ * Input V: a 64-bit input.
+ * Input c: a 64-bit input.
+ * Output : a 64-bit output.
+ * A 64-bit memory is allocated which is to be freed by the calling 
+ * function.
+ * See section 4.3.2 for details.
+ */
+u64 MUL64x(u64 V, u64 c)
+{
+	if ( V & 0x8000000000000000 )
+		return (V << 1) ^ c;
+	else
+		return V << 1;
+}
+
+/* MUL64xPOW.
+ * Input V: a 64-bit input.
+ * Input i: a positive integer.
+ * Input c: a 64-bit input.
+ * Output : a 64-bit output.
+ * A 64-bit memory is allocated which is to be freed by the calling function.
+ * See section 4.3.3 for details.
+ */
+u64 MUL64xPOW(u64 V, u8 i, u64 c)
+{
+	if ( i == 0)
+		return V; 
+	else
+		return MUL64x( MUL64xPOW(V,i-1,c) , c);
+}
+
+/* MUL64.
+ * Input V: a 64-bit input.
+ * Input P: a 64-bit input.
+ * Input c: a 64-bit input.
+ * Output : a 64-bit output.
+ * A 64-bit memory is allocated which is to be freed by the calling 
+ * function.
+ * See section 4.3.4 for details.
+ */
+u64 MUL64(u64 V, u64 P, u64 c)
+{
+	u64 result = 0;
+	int i = 0;
+
+	for ( i=0; i<64; i++)
+	{
+		if( ( P>>i ) & 0x1 )
+			result ^= MUL64xPOW(V,i,c);
+	}
+	return result;
+}
+
+/* mask8bit.
+ * Input n: an integer in 1-7.
+ * Output : an 8 bit mask.
+ * Prepares an 8 bit mask with required number of 1 bits on the MSB side.
+ */
+u8 mask8bit(int n)
+{
+	return 0xFF ^ ((1<<(8-n)) - 1);
+}
+
+/* f9.
+ * Input key: 128 bit Integrity Key.
+ * Input count:32-bit Count, Frame dependent input.
+ * Input fresh: 32-bit Random number.
+ * Input dir:1 bit, direction of transmission (in the LSB).
+ * Input data: length number of bits, input bit stream.
+ * Input length: 64 bit Length, i.e., the number of bits to be MAC'd.
+ * Output  : 32 bit block used as MAC 
+ * Generates 32-bit MAC using UIA2 algorithm as defined in Section 4.
+ */
+void snow_3g_f9(u8* key, u32 count, u32 fresh, u32 dir, u8 *data, u64 length, 
+        u8 *out)
+{
+	u32 K[4],IV[4], z[5];
+	u32 i=0, D;
+	u64 EVAL;
+	u64 V;
+	u64 P;
+	u64 Q;
+	u64 c;
+	
+	u64 M_D_2;
+	int rem_bits = 0;
+	
+	/* Load the Integrity Key for SNOW3G initialization as in section 4.4. */
+	for (i=0; i<4; i++)
+    {
+		K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16) ^
+				 (key[4*i+2] << 8) ^ (key[4*i+3]);
+    }
+	
+	/* Prepare the Initialization Vector (IV) for SNOW3G initialization as 
+	   in section 4.4. */
+	IV[3] = count;
+	IV[2] = fresh;
+	IV[1] = count ^ ( dir << 31 ) ;
+	IV[0] = fresh ^ (dir << 15);
+	
+	z[0] = z[1] = z[2] = z[3] = z[4] = 0;
+	
+	/* Run SNOW 3G to produce 5 keystream words z_1, z_2, z_3, z_4 and z_5. */
+	snow_3g_initialize(K, IV);
+	snow_3g_generate_key_stream(5, z);
+	
+	P = (u64)z[0] << 32 | (u64)z[1];
+	Q = (u64)z[2] << 32 | (u64)z[3];
+	
+	/* Calculation */
+	if ((length % 64) == 0)
+		D = (length>>6) + 1;
+	else
+		D = (length>>6) + 2;
+	EVAL = 0;
+	c = 0x1b;
+	
+	/* for 0 <= i <= D-3 */
+	for (i=0; i<D-2; i++)
+	{
+		V = EVAL ^ ( (u64)data[8*i  ]<<56 | (u64)data[8*i+1]<<48 | 
+				     (u64)data[8*i+2]<<40 | (u64)data[8*i+3]<<32 | 
+                     (u64)data[8*i+4]<<24 | (u64)data[8*i+5]<<16 | 
+				     (u64)data[8*i+6]<< 8 | (u64)data[8*i+7] )   ;
+		EVAL = MUL64(V,P,c);
+	}
+	
+	/* for D-2 */
+	rem_bits = length % 64;
+	if (rem_bits == 0)
+		rem_bits = 64;
+	
+	M_D_2 = 0;
+	i = 0;
+	while (rem_bits > 7)
+	{
+		M_D_2 |= (u64)data[8*(D-2)+i] << (8*(7-i));
+		rem_bits -= 8;
+		i++;
+	}
+	if (rem_bits > 0)
+		M_D_2 |= (u64)(data[8*(D-2)+i] & mask8bit(rem_bits)) << (8*(7-i));
+	
+	V = EVAL ^ M_D_2;
+	EVAL = MUL64(V,P,c);
+	
+	/* for D-1 */
+	EVAL ^= length;
+	
+	/* Multiply by Q */
+	EVAL = MUL64(EVAL,Q,c);
+	
+	/* XOR with z_5: this is a modification to the reference C code, 
+	   which forgot to XOR z[5] */
+	for (i=0; i<4; i++)
+		/*
+		MAC_I[i] = (mac32 >> (8*(3-i))) & 0xff;
+		*/
+		out[i] = ((EVAL >> (56-(i*8))) ^ (z[4] >> (24-(i*8)))) & 0xff;
+}
+
+/* End of f9.c */
+/*------------------------------------------------------------------------*/
diff --git a/mme/snow-3g.h b/mme/snow-3g.h
new file mode 100644
index 0000000..a5320bb
--- /dev/null
+++ b/mme/snow-3g.h
@@ -0,0 +1,68 @@
+#ifndef __SNOW_3G__
+#define __SNOW_3G__
+
+#include "ogs-core.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif /* __cplusplus */
+
+typedef uint8_t u8;
+typedef uint32_t u32;
+typedef uint64_t u64;
+
+/* Initialization.
+* Input k[4]: Four 32-bit words making up 128-bit key.
+* Input IV[4]: Four 32-bit words making 128-bit initialization variable.
+* Output: All the LFSRs and FSM are initialized for key generation.
+* See Section 4.1.
+*/
+
+void snow_3g_initialize(u32 k[4], u32 IV[4]);
+
+/* Generation of Keystream.
+* input n: number of 32-bit words of keystream.
+* input z: space for the generated keystream, assumes
+* memory is allocated already.
+* output: generated keystream which is filled in z
+* See section 4.2.
+*/
+
+void snow_3g_generate_key_stream(u32 n, u32 *z);
+
+/* f8.
+* Input key: 128 bit Confidentiality Key.
+* Input count:32-bit Count, Frame dependent input.
+* Input bearer: 5-bit Bearer identity (in the LSB side).
+* Input dir:1 bit, direction of transmission.
+* Input data: length number of bits, input bit stream.
+* Input length: 32 bit Length, i.e., the number of bits to be encrypted or
+* decrypted.
+* Output data: Output bit stream. Assumes data is suitably memory
+* allocated.
+* Encrypts/decrypts blocks of data between 1 and 2^32 bits in length as
+* defined in Section 3.
+*/
+
+void snow_3g_f8( u8 *key, u32 count, u32 bearer, u32 dir,
+                  u8 *data, u32 length );
+
+/* f9.
+* Input key: 128 bit Integrity Key.
+* Input count:32-bit Count, Frame dependent input.
+* Input fresh: 32-bit Random number.
+* Input dir:1 bit, direction of transmission (in the LSB).
+* Input data: length number of bits, input bit stream.
+* Input length: 64 bit Length, i.e., the number of bits to be MAC'd.
+* Output : 32 bit block used as MAC
+* Generates 32-bit MAC using UIA2 algorithm as defined in Section 4.
+*/
+
+void snow_3g_f9( u8* key, u32 count, u32 fresh, u32 dir,
+                 u8 *data, u64 length, u8 *out);
+
+#ifdef __cplusplus
+}
+#endif /* __cplusplus */
+
+#endif /* __SNOW_3G__ */

-- 
To view, visit https://gerrit.osmocom.org/c/osmo-ttcn3-hacks/+/15198
To unsubscribe, or for help writing mail filters, visit https://gerrit.osmocom.org/settings

Gerrit-Project: osmo-ttcn3-hacks
Gerrit-Branch: master
Gerrit-Change-Id: I938de2ad17210aa1561240c0a96d0df216243be1
Gerrit-Change-Number: 15198
Gerrit-PatchSet: 1
Gerrit-Owner: laforge <laforge at gnumonks.org>
Gerrit-MessageType: newchange
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.osmocom.org/pipermail/gerrit-log/attachments/20190814/e5127f79/attachment.htm>


More information about the gerrit-log mailing list