
GSM burst transmission in GNU Radio

Piotr Krysik (ptrkrysik@gmail.com)

A FEW WORDS ABOUT ME

● Author of the core part of gsm-receiver (part of Airprobe project)

● Main author of gr-gsm (successor of Airprobe)

● Author of Multi-RTL - a RTL-SDR based multichannel receiver

● Working at Warsaw University of Technology (radar signal processing)

GSM BURSTS TRANSMISSION

● Implementing Tx side of SDR based burst transceiver for Osmocom-BB

● Could be adapted for BTS TRX

● Could be used for testing of gr-gsm's Rx side performance

What is it for?

GSM BURSTS TRANSMISSION

Requirements
● Input: burst + header with frame number

● Output: GMSK modulated GSM RF signal synchronous with received signal

● Transmitting only when needed (MS most of the time doesn’t transmit anything)

● Transmitting in the right time (including Timing Advance)

● Assuring the right signals get transmitted

GSM BURSTS TRANSMISSION

Requirements
● Input: burst + header with frame number

● Output: GMSK modulated GSM RF signal synchronous with received signal

● Transmitting only when needed (MS most of the time doesn’t transmit anything)

● Transmitting in the right time (including Timing Advance)

● Assuring the right signals get transmitted

11 2 4 5 6 7 0 1 2 3 4 5 6 7 0

Time [ms]

A
m

p
lit

u
d

e

GNU RADIO

● Modular - signal processing functions done by reusable blocks

● Advantages
– No need to reinvent the wheel (filter design, filtering, resampling, de/modulation)

– No need to know internals of each block

– Clean architecture of the software

● Disadvantages
– Some tasks may be easier without limitations imposed by the framework

– Some tasks might require extending the runtime

Why use GNU Radio to send GSM bursts?

GNU RADIO

● All samples treated equally

● GNU Radio block see stream of samples through a window

● Block's work:
– Take some number of samples at the input

– Apply signal processing function (i.e. FIR filter)

– Write result to the output

Processing of streams of samples

GNU RADIO

● Limitations
– No packets

– No signaling downstream an event has occurrred (i.e. packet preamble detected)

– No sending data upstream

– No loops

– No control mechanism

Processing of streams of samples

GNU RADIO

● Metadata attached to a given sample in a stream

● Travel with samples across multiple blocks

● Any information in PMT (Polymorphic Type) format
– Current frequency

– Current time

– ...

● Can be used to modify block's behavior at given moment
– Change frequency shift

– Change re-sampling rate

– ...

Stream tags

GNU RADIO

● Can be used to mark start of a burst

Stream tags

GNU RADIO

● Can be used to mark start of a burst

● … but there are multiple possible positions of a burst in the block's buffer

Stream tags

GNU RADIO

● Can be used to mark start of a burst

● … but there are multiple possible positions of a burst in the block's buffer

Stream tags

GNU RADIO

● Can be used to mark start of a burst

● … but there are multiple possible positions of a burst in the block's buffer

Stream tags

GNU RADIO

● Streams "packetized" with use of stream tags

● Tag marks start of packet

● Packet length as tag value

● No spaces between packets

● Whole packet processed by a tagged stream block at once
(assured by GNU Radio's runtime)

Tagged streams

GNU RADIO

● Advantages
– uses buffers preallocated and maintained by GNU Radio

– no need to check multiple conditions of packet location in the input buffer

– simpler blocks

● Disadvantages
– packet size limit - size of GNU Radio buffers

– packet header is not distinguished from the payload

– it's a hack

Tagged streams

GNU RADIO

Message Passing
● Mechanism to send asynchronous messages (PMTs) between blocks

● Independent from samples streams

● Blocks can process streams of samples and messages

● Can be used for:
– Setting parameters of one block by another block

– Sending packets (special PDU format, pair – header (dictionary) + content (binary blob))

– Informing about events

– Implementing loops

GNU RADIO

Message Passing

GNU RADIO

Message Passing
● Advantages

– Flexible - messages can carry multiple data types (PMTs!)

– Well suited for package representation (i.e. packet with easy to distinguish header fields and data)

● Disadvantages
– Asynchronism — non-deterministic order of messages in parallel branches

– No back-pressure (no mechanism to limit how fast message source produces messages)

– No preallocated space in memory for message content

GNU RADIO

See "Stream Tags, PDUs, and Message Passing" talk by Tom Rondeau

Want more info about GNU Radio features?

BURST TRANSMISSION IN GNU RADIO

How to transmit bursts with GNU Radio?

● UHD (USRP Hardware Driver) provides
tag based interface for transmitting bursts

● Access to the interface through
“UHD: USRP Sink” block
– Connecting tagged stream to the input (with

length tag at start of each packet)

– Configuring “TSB tag name” (length tag name)
in “UHD: USRP Sink”

– Adding “tx_time” tags at the same positions as
the length tags

Tagged
stream

BURST TRANSMISSION IN GNU RADIO

Demo

● Bursts tagger adds “burst_len” (length) and “tx_time” tags

WORLD’S NOT PERFECT: HARDWARE ISSUES WITH BURST TRANSMISSION

Corrupted beginnings of bursts

● Problem only with USRP B2x0 when:
– Transmitting and receiving with the same side of the device

– There is no connection between active pin and signal ground in the Tx port
(i.e. dipole antenna or no antenna)

M
is

si
n

g

M
is

si
n

g

Missing tail of burst – transmitted as start of next burst

● Appears for many types of USRPs:

– B2x0
– X3x0 (for new firmware versions only tail of burst is missing)

● Solution: add enough zero samples at the end of each burst

WORLD’S NOT PERFECT: HARDWARE ISSUES WITH BURST TRANSMISSION

It shouldn’t be there!

TRANSMITTING GSM BURSTS WITH GNU RADIO

● Interface - receive bursts with FN (frame number) & TN (Timeslot
Number)

● FN&TN → Tx - converts FN&TN pair to tx_time

● Modulator - from PDU messages with bursts to tagged stream
with modulated bursts

● SDR Hardware - digital baseband bursts to bursts of RF signal

Building GSM transmitter

TRANSMITTING GSM BURSTS WITH GNU RADIO

● Implemented using blocks available in GNU Radio

Modulator with adaptation blocks

CONVERTING ONE TIME TO ANOTHER

Example: converting number of sample n
x
 to time t

x

(i.e. time since turning on USRP)

CONVERTING ONE TIME TO ANOTHER

Example: converting number of sample n
x
 to time t

x

(i.e. time since turning on USRP)

CONVERTING ONE TIME TO ANOTHER

Example: converting number of sample n
x
 to time t

x

(i.e. time since turning on USRP)

CONVERTING ONE TIME TO ANOTHER

Example: converting number of sample n
x
 to time t

x

(i.e. time since turning on USRP)

CONVERTING FRAME NUMBER TO TIME

Difficulty with converting frame numbers to time
● Frame number — number modulo hyperframe = 2048*51*26 [frames]

● Repeats every ~3.5 hour

● Computing unambiguous difference between two frame numbers when
distance is higher than hyperframe/2

CONVERTING FRAME NUMBER TO TIME

What it would be great to have...

CONVERTING FRAME NUMBER TO TIME

...but this is how it looks like

CONVERTING FRAME NUMBER TO TIME

Let's suppose we have t
hint

 (approximate t
x
)...

CONVERTING FRAME NUMBER TO TIME

...and use it to move (fn
ref

,t
ref

) closer to (fn
x
,t

x
)

CONVERTING FRAME NUMBER TO TIME

Solution...

CONVERTING FRAME NUMBER TO TIME

Solution.. that takes into account timeslot numbers (TS)

CONVERTING FRAME NUMBER TO TIME

Where to get (fn
ref

,t
ref

) from?

TX FLOWGRAPH DEMO

Demo

Piotr Krysik (ptrkrysik@gmail.com)

Questions?

mailto:ptrkrysik@gmail.com

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39

