[PATCH 2/4] core/conv: Add x86 SSE support for Viterbi decoding

This is merely a historical archive of years 2008-2021, before the migration to mailman3.

A maintained and still updated list archive can be found at https://lists.osmocom.org/hyperkitty/list/OpenBSC@lists.osmocom.org/.

Thomas Tsou tom at tsou.cc
Tue Apr 29 04:12:44 UTC 2014


Fast convolutional decoding is provided through x86 intrinsic based
SSE operations. SSE3, found on virtually all modern x86 processors,
is the minimal requirement with SSE4.1 used for path metric
normalization if available.

This feature is enabled with the compile flags HAVE_SSE3 and
HAVE_SSE4_1.

Signed-off-by: Thomas Tsou <tom at tsou.cc>
---
 src/Makefile.am   |   2 +-
 src/viterbi_gen.c |   4 +
 src/viterbi_sse.c | 581 ++++++++++++++++++++++++++++++++++++++++++++++++++++++
 3 files changed, 586 insertions(+), 1 deletion(-)
 create mode 100644 src/viterbi_sse.c

diff --git a/src/Makefile.am b/src/Makefile.am
index 262a4e6..0ecf4b0 100644
--- a/src/Makefile.am
+++ b/src/Makefile.am
@@ -14,7 +14,7 @@ libosmocore_la_SOURCES = timer.c select.c signal.c msgb.c bits.c \
 			 gsmtap_util.c crc16.c panic.c backtrace.c \
 			 conv.c application.c rbtree.c strrb.c \
 			 loggingrb.c crc8gen.c crc16gen.c crc32gen.c crc64gen.c \
-			 viterbi.c viterbi_gen.c
+			 viterbi.c viterbi_gen.c viterbi_sse.c
 
 BUILT_SOURCES = crc8gen.c crc16gen.c crc32gen.c crc64gen.c
 
diff --git a/src/viterbi_gen.c b/src/viterbi_gen.c
index 894d5ae..e3585ec 100644
--- a/src/viterbi_gen.c
+++ b/src/viterbi_gen.c
@@ -17,6 +17,9 @@
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
+#include "config.h"
+
+#ifndef HAVE_SSE3
 #include <stdint.h>
 #include <string.h>
 
@@ -180,3 +183,4 @@ void gen_metrics_k7_n4(const int8_t *seq, const int16_t *out,
 	_gen_branch_metrics_n4(64, seq, out, metrics);
 	_gen_path_metrics(64, sums, metrics, paths, norm);
 }
+#endif /* !HAVE_SSE3 */
diff --git a/src/viterbi_sse.c b/src/viterbi_sse.c
new file mode 100644
index 0000000..2372994
--- /dev/null
+++ b/src/viterbi_sse.c
@@ -0,0 +1,581 @@
+/*
+ * Intel SSE Viterbi decoder
+ * Copyright (C) 2013, 2014 Thomas Tsou <tom at tsou.cc>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#include "config.h"
+
+#ifdef HAVE_SSE3
+#include <stdint.h>
+#include <emmintrin.h>
+#include <tmmintrin.h>
+
+#if defined(HAVE_SSE4_1) || defined(HAVE_SSE41)
+#include <smmintrin.h>
+#endif
+
+#ifdef HAVE_AVX2
+#include <immintrin.h>
+#endif
+
+/* Octo-Viterbi butterfly:
+ *     Compute 8-wide butterfly generating 16 path decisions and 16 accumulated
+ *     sums. Inputs all packed 16-bit integers in three 128-bit XMM registers.
+ *     Two intermediate registers are used and results are set in the upper 4
+ *     registers.
+ *
+ *     Input:
+ *     M0 - Path metrics 0 (packed 16-bit integers)
+ *     M1 - Path metrics 1 (packed 16-bit integers)
+ *     M2 - Branch metrics (packed 16-bit integers)
+ *
+ *     Output:
+ *     M2 - Selected and accumulated path metrics 0
+ *     M4 - Selected and accumulated path metrics 1
+ *     M3 - Path selections 0
+ *     M1 - Path selections 1
+ */
+#define SSE_BUTTERFLY(M0,M1,M2,M3,M4) \
+{ \
+	M3 = _mm_adds_epi16(M0, M2); \
+	M4 = _mm_subs_epi16(M1, M2); \
+	M0 = _mm_subs_epi16(M0, M2); \
+	M1 = _mm_adds_epi16(M1, M2); \
+	M2 = _mm_max_epi16(M3, M4); \
+	M3 = _mm_cmpgt_epi16(M3, M4); \
+	M4 = _mm_max_epi16(M0, M1); \
+	M1 = _mm_cmpgt_epi16(M0, M1); \
+}
+
+/* Two lane deinterleaving K = 5:
+ *     Take 16 interleaved 16-bit integers and deinterleave to 2 packed 128-bit
+ *     registers. The operation summarized below. Four registers are used with
+ *     the lower 2 as input and upper 2 as output.
+ *
+ *     In   - 10101010 10101010 10101010 10101010
+ *     Out  - 00000000 11111111 00000000 11111111
+ *
+ *     Input:
+ *     M0:1 - Packed 16-bit integers
+ *
+ *     Output:
+ *     M2:3 - Deinterleaved packed 16-bit integers
+ */
+#define _I8_SHUFFLE_MASK 15, 14, 11, 10, 7, 6, 3, 2, 13, 12, 9, 8, 5, 4, 1, 0
+
+#define SSE_DEINTERLEAVE_K5(M0,M1,M2,M3) \
+{ \
+	M2 = _mm_set_epi8(_I8_SHUFFLE_MASK); \
+	M0 = _mm_shuffle_epi8(M0, M2); \
+	M1 = _mm_shuffle_epi8(M1, M2); \
+	M2 = _mm_unpacklo_epi64(M0, M1); \
+	M3 = _mm_unpackhi_epi64(M0, M1); \
+}
+
+/* Two lane deinterleaving K = 7:
+ *     Take 64 interleaved 16-bit integers and deinterleave to 8 packed 128-bit
+ *     registers. The operation summarized below. 16 registers are used with the
+ *     lower 8 as input and upper 8 as output.
+ *
+ *     In   - 10101010 10101010 10101010 10101010 ...
+ *     Out  - 00000000 11111111 00000000 11111111 ...
+ *
+ *     Input:
+ *     M0:7 - Packed 16-bit integers
+ *
+ *     Output:
+ *     M8:15 - Deinterleaved packed 16-bit integers
+ */
+#define SSE_DEINTERLEAVE_K7(M0,M1,M2,M3,M4,M5,M6,M7, \
+			    M8,M9,M10,M11,M12,M13,M14,M15) \
+{ \
+	M8  = _mm_set_epi8(_I8_SHUFFLE_MASK); \
+	M0  = _mm_shuffle_epi8(M0, M8); \
+	M1  = _mm_shuffle_epi8(M1, M8); \
+	M2  = _mm_shuffle_epi8(M2, M8); \
+	M3  = _mm_shuffle_epi8(M3, M8); \
+	M4  = _mm_shuffle_epi8(M4, M8); \
+	M5  = _mm_shuffle_epi8(M5, M8); \
+	M6  = _mm_shuffle_epi8(M6, M8); \
+	M7  = _mm_shuffle_epi8(M7, M8); \
+	M8  = _mm_unpacklo_epi64(M0, M1); \
+	M9  = _mm_unpackhi_epi64(M0, M1); \
+	M10 = _mm_unpacklo_epi64(M2, M3); \
+	M11 = _mm_unpackhi_epi64(M2, M3); \
+	M12 = _mm_unpacklo_epi64(M4, M5); \
+	M13 = _mm_unpackhi_epi64(M4, M5); \
+	M14 = _mm_unpacklo_epi64(M6, M7); \
+	M15 = _mm_unpackhi_epi64(M6, M7); \
+}
+
+/* Generate branch metrics N = 2:
+ *     Compute 16 branch metrics from trellis outputs and input values.
+ *
+ *     Input:
+ *     M0:3 - 16 x 2 packed 16-bit trellis outputs
+ *     M4   - Expanded and packed 16-bit input value
+ *
+ *     Output:
+ *     M6:7 - 16 computed 16-bit branch metrics
+ */
+#define SSE_BRANCH_METRIC_N2(M0,M1,M2,M3,M4,M6,M7) \
+{ \
+	M0 = _mm_sign_epi16(M4, M0); \
+	M1 = _mm_sign_epi16(M4, M1); \
+	M2 = _mm_sign_epi16(M4, M2); \
+	M3 = _mm_sign_epi16(M4, M3); \
+	M6 = _mm_hadds_epi16(M0, M1); \
+	M7 = _mm_hadds_epi16(M2, M3); \
+}
+
+/* Generate branch metrics N = 4:
+ *     Compute 8 branch metrics from trellis outputs and input values. This
+ *     macro is reused for N less than 4 where the extra soft input bits are
+ *     padded.
+ *
+ *     Input:
+ *     M0:3 - 8 x 4 packed 16-bit trellis outputs
+ *     M4   - Expanded and packed 16-bit input value
+ *
+ *     Output:
+ *     M5   - 8 computed 16-bit branch metrics
+ */
+#define SSE_BRANCH_METRIC_N4(M0,M1,M2,M3,M4,M5) \
+{ \
+	M0 = _mm_sign_epi16(M4, M0); \
+	M1 = _mm_sign_epi16(M4, M1); \
+	M2 = _mm_sign_epi16(M4, M2); \
+	M3 = _mm_sign_epi16(M4, M3); \
+	M0 = _mm_hadds_epi16(M0, M1); \
+	M1 = _mm_hadds_epi16(M2, M3); \
+	M5 = _mm_hadds_epi16(M0, M1); \
+}
+
+/* Broadcast 16-bit integer
+ *     Repeat the low 16-bit integer to all elements of the 128-bit SSE
+ *     register. Only AVX2 has a dedicated broadcast instruction; use repeat
+ *     unpacks for SSE only architectures. This is a destructive operation and
+ *     the source register is overwritten.
+ *
+ *     Input:
+ *     M0 - Low 16-bit element is read
+ *
+ *     Output:
+ *     M0 - Contains broadcasted values
+ */
+#ifdef HAVE_AVX2
+#define SSE_BROADCAST(M0) \
+{ \
+	M0 = _mm_broadcastw_epi16(M0); \
+}
+#else
+#define SSE_BROADCAST(M0) \
+{ \
+	M0 = _mm_unpacklo_epi16(M0, M0); \
+	M0 = _mm_unpacklo_epi32(M0, M0); \
+	M0 = _mm_unpacklo_epi64(M0, M0); \
+}
+#endif
+
+/* Horizontal minimum
+ *     Compute horizontal minimum of packed unsigned 16-bit integers and place
+ *     result in the low 16-bit element of the source register. Only SSE 4.1
+ *     has a dedicated minpos instruction. One internmediate register is used
+ *     if SSE 4.1 is not available. This is a destructive operation and the
+ *     source register is overwritten.
+ *
+ *     Input:
+ *     M0 - Packed unsigned 16-bit integers
+ *
+ *     Output:
+ *     M0 - Minimum value placed in low 16-bit element
+ */
+#if defined(HAVE_SSE4_1) || defined(HAVE_SSE41)
+#define SSE_MINPOS(M0,M1) \
+{ \
+	M0 = _mm_minpos_epu16(M0); \
+}
+#else
+#define SSE_MINPOS(M0,M1) \
+{ \
+	M1 = _mm_shuffle_epi32(M0, _MM_SHUFFLE(0, 0, 3, 2)); \
+	M0 = _mm_min_epi16(M0, M1); \
+	M1 = _mm_shufflelo_epi16(M0, _MM_SHUFFLE(0, 0, 3, 2)); \
+	M0 = _mm_min_epi16(M0, M1); \
+	M1 = _mm_shufflelo_epi16(M0, _MM_SHUFFLE(0, 0, 0, 1)); \
+	M0 = _mm_min_epi16(M0, M1); \
+}
+#endif
+
+/* Normalize state metrics K = 5:
+ *     Compute 16-wide normalization by subtracting the smallest value from
+ *     all values. Inputs are 16 packed 16-bit integers across 2 XMM registers.
+ *     Two intermediate registers are used and normalized results are placed
+ *     in the originating locations.
+ *
+ *     Input:
+ *     M0:1 - Path metrics 0:1 (packed 16-bit integers)
+ *
+ *     Output:
+ *     M0:1 - Normalized path metrics 0:1
+ */
+#define SSE_NORMALIZE_K5(M0,M1,M2,M3) \
+{ \
+	M2 = _mm_min_epi16(M0, M1); \
+	SSE_MINPOS(M2, M3) \
+	SSE_BROADCAST(M2) \
+	M0 = _mm_subs_epi16(M0, M2); \
+	M1 = _mm_subs_epi16(M1, M2); \
+}
+
+/* Normalize state metrics K = 7:
+ *     Compute 64-wide normalization by subtracting the smallest value from
+ *     all values. Inputs are 8 registers of accumulated sums and 4 temporary
+ *     registers. Normalized results are returned in the originating locations.
+ *
+ *     Input:
+ *     M0:7 - Path metricss 0:7 (packed 16-bit integers)
+ *
+ *     Output:
+ *     M0:7 - Normalized path metrics 0:7
+ */
+#define SSE_NORMALIZE_K7(M0,M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11) \
+{ \
+	M8  = _mm_min_epi16(M0, M1); \
+	M9  = _mm_min_epi16(M2, M3); \
+	M10 = _mm_min_epi16(M4, M5); \
+	M11 = _mm_min_epi16(M6, M7); \
+	M8  = _mm_min_epi16(M8, M9); \
+	M10 = _mm_min_epi16(M10, M11); \
+	M8  = _mm_min_epi16(M8, M10); \
+	SSE_MINPOS(M8, M9) \
+	SSE_BROADCAST(M8) \
+	M0  = _mm_subs_epi16(M0, M8); \
+	M1  = _mm_subs_epi16(M1, M8); \
+	M2  = _mm_subs_epi16(M2, M8); \
+	M3  = _mm_subs_epi16(M3, M8); \
+	M4  = _mm_subs_epi16(M4, M8); \
+	M5  = _mm_subs_epi16(M5, M8); \
+	M6  = _mm_subs_epi16(M6, M8); \
+	M7  = _mm_subs_epi16(M7, M8); \
+}
+
+/* Combined BMU/PMU (K=5, N=2)
+ *     Compute branch metrics followed by path metrics for half rate 16-state
+ *     trellis. 8 butterflies are computed. Accumulated path sums are not
+ *     preserved and read and written into the same memory location. Normalize
+ *     sums if requires.
+ */
+__always_inline void _sse_metrics_k5_n2(const int16_t *val,
+					const int16_t *out,
+					int16_t *sums,
+					int16_t *paths,
+					int norm)
+{
+	__m128i m0, m1, m2, m3, m4, m5, m6;
+
+	/* (BMU) Load input sequence */
+	m2 = _mm_castpd_si128(_mm_loaddup_pd((double const *) val));
+
+	/* (BMU) Load trellis outputs */
+	m0 = _mm_load_si128((__m128i *) &out[0]);
+	m1 = _mm_load_si128((__m128i *) &out[8]);
+
+	/* (BMU) Compute branch metrics */
+	m0 = _mm_sign_epi16(m2, m0);
+	m1 = _mm_sign_epi16(m2, m1);
+	m2 = _mm_hadds_epi16(m0, m1);
+
+	/* (PMU) Load accumulated path matrics */
+	m0 = _mm_load_si128((__m128i *) &sums[0]);
+	m1 = _mm_load_si128((__m128i *) &sums[8]);
+
+	SSE_DEINTERLEAVE_K5(m0, m1, m3, m4)
+
+	/* (PMU) Butterflies: 0-7 */
+	SSE_BUTTERFLY(m3, m4, m2, m5, m6)
+
+	if (norm)
+		SSE_NORMALIZE_K5(m2, m6, m0, m1)
+
+	_mm_store_si128((__m128i *) &sums[0], m2);
+	_mm_store_si128((__m128i *) &sums[8], m6);
+	_mm_store_si128((__m128i *) &paths[0], m5);
+	_mm_store_si128((__m128i *) &paths[8], m4);
+}
+
+/* Combined BMU/PMU (K=5, N=3 and N=4)
+ *     Compute branch metrics followed by path metrics for 16-state and rates
+ *     to 1/4. 8 butterflies are computed. The input sequence is read four 16-bit
+ *     values at a time, and extra values should be set to zero for rates other
+ *     than 1/4. Normally only rates 1/3 and 1/4 are used as there is a
+ *     dedicated implementation of rate 1/2.
+ */
+__always_inline void _sse_metrics_k5_n4(const int16_t *val,
+					const int16_t *out,
+					int16_t *sums,
+					int16_t *paths,
+					int norm)
+{
+	__m128i m0, m1, m2, m3, m4, m5, m6;
+
+	/* (BMU) Load input sequence */
+	m4 = _mm_castpd_si128(_mm_loaddup_pd((double const *) val));
+
+	/* (BMU) Load trellis outputs */
+	m0 = _mm_load_si128((__m128i *) &out[0]);
+	m1 = _mm_load_si128((__m128i *) &out[8]);
+	m2 = _mm_load_si128((__m128i *) &out[16]);
+	m3 = _mm_load_si128((__m128i *) &out[24]);
+
+	SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m4, m2)
+
+	/* (PMU) Load accumulated path matrics */
+	m0 = _mm_load_si128((__m128i *) &sums[0]);
+	m1 = _mm_load_si128((__m128i *) &sums[8]);
+
+	SSE_DEINTERLEAVE_K5(m0, m1, m3, m4)
+
+	/* (PMU) Butterflies: 0-7 */
+	SSE_BUTTERFLY(m3, m4, m2, m5, m6)
+
+	if (norm)
+		SSE_NORMALIZE_K5(m2, m6, m0, m1)
+
+	_mm_store_si128((__m128i *) &sums[0], m2);
+	_mm_store_si128((__m128i *) &sums[8], m6);
+	_mm_store_si128((__m128i *) &paths[0], m5);
+	_mm_store_si128((__m128i *) &paths[8], m4);
+}
+
+/* Combined BMU/PMU (K=7, N=2)
+ *     Compute branch metrics followed by path metrics for half rate 64-state
+ *     trellis. 32 butterfly operations are computed. Deinterleaving path
+ *     metrics requires usage of the full SSE register file, so separate sums
+ *     before computing branch metrics to avoid register spilling.
+ */
+__always_inline void _sse_metrics_k7_n2(const int16_t *val,
+					const const int16_t *out,
+					int16_t *sums,
+					int16_t *paths,
+					int norm)
+{
+	__m128i m0, m1, m2, m3, m4, m5, m6, m7, m8,
+		m9, m10, m11, m12, m13, m14, m15;
+
+	/* (PMU) Load accumulated path matrics */
+	m0 = _mm_load_si128((__m128i *) &sums[0]);
+	m1 = _mm_load_si128((__m128i *) &sums[8]);
+	m2 = _mm_load_si128((__m128i *) &sums[16]);
+	m3 = _mm_load_si128((__m128i *) &sums[24]);
+	m4 = _mm_load_si128((__m128i *) &sums[32]);
+	m5 = _mm_load_si128((__m128i *) &sums[40]);
+	m6 = _mm_load_si128((__m128i *) &sums[48]);
+	m7 = _mm_load_si128((__m128i *) &sums[56]);
+
+	/* (PMU) Deinterleave to even-odd registers */
+	SSE_DEINTERLEAVE_K7(m0, m1, m2, m3 ,m4 ,m5, m6, m7,
+			    m8, m9, m10, m11, m12, m13, m14, m15)
+
+	/* (BMU) Load input symbols */
+	m7 = _mm_castpd_si128(_mm_loaddup_pd((double const *) val));
+
+	/* (BMU) Load trellis outputs */
+	m0 = _mm_load_si128((__m128i *) &out[0]);
+	m1 = _mm_load_si128((__m128i *) &out[8]);
+	m2 = _mm_load_si128((__m128i *) &out[16]);
+	m3 = _mm_load_si128((__m128i *) &out[24]);
+
+	SSE_BRANCH_METRIC_N2(m0, m1, m2, m3, m7, m4, m5)
+
+	m0 = _mm_load_si128((__m128i *) &out[32]);
+	m1 = _mm_load_si128((__m128i *) &out[40]);
+	m2 = _mm_load_si128((__m128i *) &out[48]);
+	m3 = _mm_load_si128((__m128i *) &out[56]);
+
+	SSE_BRANCH_METRIC_N2(m0, m1, m2, m3, m7, m6, m7)
+
+	/* (PMU) Butterflies: 0-15 */
+	SSE_BUTTERFLY(m8, m9, m4, m0, m1)
+	SSE_BUTTERFLY(m10, m11, m5, m2, m3)
+
+	_mm_store_si128((__m128i *) &paths[0], m0);
+	_mm_store_si128((__m128i *) &paths[8], m2);
+	_mm_store_si128((__m128i *) &paths[32], m9);
+	_mm_store_si128((__m128i *) &paths[40], m11);
+
+	/* (PMU) Butterflies: 17-31 */
+	SSE_BUTTERFLY(m12, m13, m6, m0, m2)
+	SSE_BUTTERFLY(m14, m15, m7, m9, m11)
+
+	_mm_store_si128((__m128i *) &paths[16], m0);
+	_mm_store_si128((__m128i *) &paths[24], m9);
+	_mm_store_si128((__m128i *) &paths[48], m13);
+	_mm_store_si128((__m128i *) &paths[56], m15);
+
+	if (norm)
+		SSE_NORMALIZE_K7(m4, m1, m5, m3, m6, m2,
+				 m7, m11, m0, m8, m9, m10)
+
+	_mm_store_si128((__m128i *) &sums[0], m4);
+	_mm_store_si128((__m128i *) &sums[8], m5);
+	_mm_store_si128((__m128i *) &sums[16], m6);
+	_mm_store_si128((__m128i *) &sums[24], m7);
+	_mm_store_si128((__m128i *) &sums[32], m1);
+	_mm_store_si128((__m128i *) &sums[40], m3);
+	_mm_store_si128((__m128i *) &sums[48], m2);
+	_mm_store_si128((__m128i *) &sums[56], m11);
+}
+
+/* Combined BMU/PMU (K=7, N=3 and N=4)
+ *     Compute branch metrics followed by path metrics for half rate 64-state
+ *     trellis. 32 butterfly operations are computed. Deinterleave path
+ *     metrics before computing branch metrics as in the half rate case.
+ */
+__always_inline void _sse_metrics_k7_n4(const int16_t *val, const int16_t *out,
+					int16_t *sums, int16_t *paths, int norm)
+{
+	__m128i m0, m1, m2, m3, m4, m5, m6, m7;
+	__m128i m8, m9, m10, m11, m12, m13, m14, m15;
+
+	/* (PMU) Load accumulated path matrics */
+	m0 = _mm_load_si128((__m128i *) &sums[0]);
+	m1 = _mm_load_si128((__m128i *) &sums[8]);
+	m2 = _mm_load_si128((__m128i *) &sums[16]);
+	m3 = _mm_load_si128((__m128i *) &sums[24]);
+	m4 = _mm_load_si128((__m128i *) &sums[32]);
+	m5 = _mm_load_si128((__m128i *) &sums[40]);
+	m6 = _mm_load_si128((__m128i *) &sums[48]);
+	m7 = _mm_load_si128((__m128i *) &sums[56]);
+
+	/* (PMU) Deinterleave into even and odd packed registers */
+	SSE_DEINTERLEAVE_K7(m0, m1, m2, m3 ,m4 ,m5, m6, m7,
+			    m8, m9, m10, m11, m12, m13, m14, m15)
+
+	/* (BMU) Load and expand 8-bit input out to 16-bits */
+	m7 = _mm_castpd_si128(_mm_loaddup_pd((double const *) val));
+
+	/* (BMU) Load and compute branch metrics */
+	m0 = _mm_load_si128((__m128i *) &out[0]);
+	m1 = _mm_load_si128((__m128i *) &out[8]);
+	m2 = _mm_load_si128((__m128i *) &out[16]);
+	m3 = _mm_load_si128((__m128i *) &out[24]);
+
+	SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m7, m4)
+
+	m0 = _mm_load_si128((__m128i *) &out[32]);
+	m1 = _mm_load_si128((__m128i *) &out[40]);
+	m2 = _mm_load_si128((__m128i *) &out[48]);
+	m3 = _mm_load_si128((__m128i *) &out[56]);
+
+	SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m7, m5)
+
+	m0 = _mm_load_si128((__m128i *) &out[64]);
+	m1 = _mm_load_si128((__m128i *) &out[72]);
+	m2 = _mm_load_si128((__m128i *) &out[80]);
+	m3 = _mm_load_si128((__m128i *) &out[88]);
+
+	SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m7, m6)
+
+	m0 = _mm_load_si128((__m128i *) &out[96]);
+	m1 = _mm_load_si128((__m128i *) &out[104]);
+	m2 = _mm_load_si128((__m128i *) &out[112]);
+	m3 = _mm_load_si128((__m128i *) &out[120]);
+
+	SSE_BRANCH_METRIC_N4(m0, m1, m2, m3, m7, m7)
+
+	/* (PMU) Butterflies: 0-15 */
+	SSE_BUTTERFLY(m8, m9, m4, m0, m1)
+	SSE_BUTTERFLY(m10, m11, m5, m2, m3)
+
+	_mm_store_si128((__m128i *) &paths[0], m0);
+	_mm_store_si128((__m128i *) &paths[8], m2);
+	_mm_store_si128((__m128i *) &paths[32], m9);
+	_mm_store_si128((__m128i *) &paths[40], m11);
+
+	/* (PMU) Butterflies: 17-31 */
+	SSE_BUTTERFLY(m12, m13, m6, m0, m2)
+	SSE_BUTTERFLY(m14, m15, m7, m9, m11)
+
+	_mm_store_si128((__m128i *) &paths[16], m0);
+	_mm_store_si128((__m128i *) &paths[24], m9);
+	_mm_store_si128((__m128i *) &paths[48], m13);
+	_mm_store_si128((__m128i *) &paths[56], m15);
+
+	if (norm)
+		SSE_NORMALIZE_K7(m4, m1, m5, m3, m6, m2,
+				 m7, m11, m0, m8, m9, m10)
+
+	_mm_store_si128((__m128i *) &sums[0], m4);
+	_mm_store_si128((__m128i *) &sums[8], m5);
+	_mm_store_si128((__m128i *) &sums[16], m6);
+	_mm_store_si128((__m128i *) &sums[24], m7);
+	_mm_store_si128((__m128i *) &sums[32], m1);
+	_mm_store_si128((__m128i *) &sums[40], m3);
+	_mm_store_si128((__m128i *) &sums[48], m2);
+	_mm_store_si128((__m128i *) &sums[56], m11);
+}
+
+void gen_metrics_k5_n2(const int8_t *val, const int16_t *out,
+		       int16_t *sums, int16_t *paths, int norm)
+{
+	const int16_t _val[4] = { val[0], val[1], val[0], val[1] };
+
+	_sse_metrics_k5_n2(_val, out, sums, paths, norm);
+}
+
+void gen_metrics_k5_n3(const int8_t *val, const int16_t *out,
+		       int16_t *sums, int16_t *paths, int norm)
+{
+	const int16_t _val[4] = { val[0], val[1], val[2], 0 };
+
+	_sse_metrics_k5_n4(_val, out, sums, paths, norm);
+}
+
+void gen_metrics_k5_n4(const int8_t *val, const int16_t *out,
+		       int16_t *sums, int16_t *paths, int norm)
+{
+	const int16_t _val[4] = { val[0], val[1], val[2], val[3] };
+
+	_sse_metrics_k5_n4(_val, out, sums, paths, norm);
+}
+
+void gen_metrics_k7_n2(const int8_t *val, const int16_t *out,
+		       int16_t *sums, int16_t *paths, int norm)
+{
+	const int16_t _val[4] = { val[0], val[1], val[0], val[1] };
+
+	_sse_metrics_k7_n2(_val, out, sums, paths, norm);
+}
+
+void gen_metrics_k7_n3(const int8_t *val, const int16_t *out,
+		       int16_t *sums, int16_t *paths, int norm)
+{
+	const int16_t _val[4] = { val[0], val[1], val[2], 0 };
+
+	_sse_metrics_k7_n4(_val, out, sums, paths, norm);
+}
+
+void gen_metrics_k7_n4(const int8_t *val, const int16_t *out,
+		       int16_t *sums, int16_t *paths, int norm)
+{
+	const int16_t _val[4] = { val[0], val[1], val[2], val[3] };
+
+	_sse_metrics_k7_n4(_val, out, sums, paths, norm);
+}
+
+#endif /* HAVE_SSE3 */
-- 
1.9.0





More information about the OpenBSC mailing list